MTH 221, Linear Algebra, Exam I, 2013

Ayman Badawi

QUESTION 1. Find the solution-set to the following system

$$x_2 + x_3 - x_4 = -2$$
$$x_1 - x_2 - x_3 + x_4 = 7$$
$$2x_1 - 2x_2 - 2x_3 + 2x_4 = 14$$

QUESTION 2. For what values of k will the following system be consistent?

$$x_1 + 2x_2 - 8x_3 = 10$$
$$-x_1 - 2x_2 + kx_3 = -9$$
$$2x_1 + 4x_2 + kx_3 = 16$$

QUESTION 3. Let
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -1 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ -3 & 2 \\ 2 & -1 \end{bmatrix}$. Let $D = AB$ and $C = BA$

a) Find D_2

b) Find C_3

c) Find c_{21}

QUESTION 4. Let
$$C = \begin{bmatrix} a & b & a \\ c & d & c \\ e & f & e \end{bmatrix}$$
 and $K = \begin{bmatrix} 2a \\ 2c \\ 2e \end{bmatrix}$, where $a, b, c, d, e, f \in R$. Consider the system of linear

equations CX = K

a) Give me two particular solutions to the system

b) Convince me that the system has infinitely many solutions.

QUESTION 5. For what values of a, b will the following system be inconsistent?

$$x_1 + 4x_2 + 4x_3 = a$$
$$-2x_1 - 8x_2 + bx_3 = 6$$

QUESTION 6. a) Let $W = \begin{bmatrix} 1 & 2 & -3 \\ -1 & -1 & 3 \\ 4 & 8 & -11 \end{bmatrix}$. If possible find W^{-1} .

b) Let W as in (a) and find the solution-set for the system $WX = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}$

QUESTION 7. USE ROW-OPERATIONS ONLY to find $\begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ -4 & 3 & 0 \end{bmatrix}$

QUESTION 8. Let A be a 3×3 matrix such $A \quad \overrightarrow{2R_1 + R_3 \rightarrow R_3} \quad B \quad \overrightarrow{2R_1} \quad C$ a) Find two elementary matrices E, F such that EFC = A

b)Find a 3×3 matrix D such that DA = C

c) Find a 3×3 matrix L such that LB = C

d) EXTRA CREDIT 3 points: Name the Arab Idol for the year 2013:

Faculty information

MTH 221, Linear Algebra, Exam II, 2013

Ayman Badawi

QUESTION 1. Given A is a 4×4 matrix such that

$$A \quad \overrightarrow{3R_1 + 2R_2 \to R_2} \quad B \quad \overrightarrow{-R_2 + R_4 \to R_4} \quad C \quad \overrightarrow{4R_3} \quad \begin{bmatrix} 4 & 5 & 9 & 2 \\ -4 & -4 & 6 & 2 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

a) Find det(A).

b) Find the (3, 4)-entry of C^{-1}

c) Find the solution-set for the system of L.E $AX = \begin{bmatrix} 1 \\ -2 \\ 2 \\ 4 \end{bmatrix}$

QUESTION 2. Given A is a 4×4 matrix such that det(A) = 2013. Let K be the first row of A. Find the solution-set for the system $A^T X = K^T$. Explain briefly your solution.

QUESTION 3. a) Let $A = \begin{bmatrix} 4 & 7 & a \\ -4 & b & c \\ -8 & -14 & 6 \end{bmatrix}$ and *K* be the first column of *A*. For what values of *a*, *b*, *c* will the system AX = K have unique solution? Find the solution-set.

b)Let A as in (a). For what values of a, b, c will the system $AX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ have infinitely many solutions?

QUESTION 4. a) Find a 3×2 matrix A such that

$$A\begin{bmatrix} 4 & -2\\ -2 & 0 \end{bmatrix} + A = \begin{bmatrix} 1 & 1\\ -1 & 0\\ -4 & 1 \end{bmatrix}$$

b) Given A, B are 3×3 matrices such that det(A) = -3, det(B) = 2. Then i) $det(A^2B^{-1}) =$

ii) $det(2A^TB) =$

QUESTION 5. Given
$$A = \begin{bmatrix} 6 & 8 & 2 \\ -6 & -7 & -1 \\ -6 & -8 & -4 \end{bmatrix}$$
. Use CRAMER rule to find the value of x_3 when solving the system
$$AX = \begin{bmatrix} 10 \\ -5 \\ -20 \end{bmatrix}$$

QUESTION 6. Let
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 4 & a & b \\ c & 7 & 10 \end{bmatrix}$$
 such that $det(A) = 70$. Given $B = \begin{bmatrix} 1 & 2 & 4 \\ -3 & a & b \\ c & 7 & 10 \end{bmatrix}$. Find $det(B)$.

QUESTION 7. Let
$$A = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$

Find all eigenvalues of A, then for each eigenvalue γ of A, find E_{γ} .

Faculty information

MTH 221, Linear Algebra, Final Exam, 2013

Ayman Badawi

QUESTION 1. i) Find a matrix $A, 3 \times 3$, with eigenvalues: 2, 3, and a for some number a such that $(0, 2, 3) \in E_2(A)$ and $(0, -2, -2) \in E_3(A)$. [You do not need to calculate the eigenvalue a

ii) Let A as in (i) above. Find a nonzero matrix Q, 3×4 such that AQ = 2Q

QUESTION 2. For what values of a, b, c, d, e, f will the matrix $A = \begin{bmatrix} 2 & a & b & c \\ 0 & 2 & e & d \\ 0 & 0 & 3 & f \\ 0 & 0 & 0 & 6 \end{bmatrix}$ be diagnolizable?

QUESTION 3. ii) If A is diagnolizable, then find an invertible matrix Q and a diagonal matrix D such that $QDQ^{-1} = A$.

iii)Find a nonzero matrix F, 4×2 such that AF = 3F

ii) Given $A = \begin{bmatrix} 0 & -4 \\ 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$. Is there an invertible matrix $L, 2 \times 2$, such that $LAL^{-1} = B$? If YES, then find L. If NO, then briefly explain.

iii) Given
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}$. Find an invertible matrix Q such that $QAQ^{-1} = B$.

iv) Given A is a 3×3 matrix and $B = A - 2I_3$ where 0, 1, 2 are the eigenvalues of B. Find the eigenvalues of A and calculate det(A)

Faculty information

MTH 221, Linear Algebra, Final Exam, 2013

Ayman Badawi

QUESTION 1. (5 points) i) Find a matrix $A, 3 \times 3$, with eigenvalues: 2, 3, -9 such that $(0, 2, 3) \in E_2(A)$ and $(0, -2, -2) \in E_3(A)$. [There are infinitely many possibilities for the matrix A, I only ask you to give me one possibility]. For the matrix A you found, what is $E_{-9}(A)$.

ii) (3 points) Let A as in (i) above. Find a nonzero matrix Q, 3×4 , such that AQ = 2Q

QUESTION 2. (5 points) For what values of a, b, c, d, e, f will the matrix $A = \begin{bmatrix} 2 & a & b & c \\ 0 & 2 & e & d \\ 0 & 0 & 3 & f \\ 0 & 0 & 0 & 6 \end{bmatrix}$ be diagnolizable?

QUESTION 3. (Each 3 points) The following are not subspaces. Use examples to show that one of the two conditions for a set to be a subspace is failed. i) $M = \{A \in \mathbb{R}^{4 \times 4} \mid Rank(A)\}$

ii) $L = \{f(x) \in P_4 \mid f(0) \text{ is an integer (whole number})\}$

iii) $F = \{A \in R^{3 \times 3} \mid A \text{ is non-invertible } \}$

iv)
$$D = \{f(x) \in P_4 \mid f(0) = 0 \text{ or } f(1) = 0\}$$

v) $H = \{a, 2a + c - 3, c) \mid a, c \in R\}$

3

QUESTION 4. (Each 3 points) The following are subspaces. Find the dimension and find a basis for each one of them.

i) $F = \{f(x) \in P_6 \mid f(1) = f(0) = f(2) = 0\}$

ii) $K = \{f(x) \in P_3 \mid \int_{-1}^1 f(x) \, dx = 0\}$

iii)
$$L = \{(a - b, 3a - 3b, c, d) \mid a, b, c, d \in R\}$$

iv)
$$F = span\{x^3 + x - 3, -6x, 2x^3 - 10x - 6\}$$

(Question 4 continues):

(v)
$$N = row(A)$$
 where $A = \begin{bmatrix} 1 & -1 & -2 & 3 \\ -1 & 1 & 2 & 1 \\ 2 & -2 & -4 & 6 \end{bmatrix}$

_

vi) G = Col(A) where A as in v above.

QUESTION 5. (6 points) Let $M = span\{(1,0,0,1), (0,1,0,1), (0,0,1,-1), (2,2,2,2)\}$. Find an orthogonal basis for M.

QUESTION 7. (4 points) Given $\{(2, 0, 4, -1), (-4, 0, -8, 3), Q_1, Q_2\}$ is a basis for \mathbb{R}^4 . Find the points Q_1, Q_2 .

QUESTION 8. (10 points) Let $T : R^4 \to R^5$ be a linear transformation such that T(2,0,0,0) = T(0,0,0,4) = (4,8,0,4,0) and T(2,0,1,4) = T(0,1,0,0) = (-2,-6,2,0,-2). i) Find the standard matrix representation of T.

ii) Find a basis for the range of T

iii) Find a basis for the Ker(T)

QUESTION 9. (each 3 points points) Let A be a 3×3 matrix such that $A \ \overrightarrow{3R_2} B \ \overrightarrow{2R_1 + R_2} \rightarrow \overrightarrow{R_2} C \ \overrightarrow{-4R_3} D = \begin{bmatrix} 1 & -2 & 2 \\ 0 & -1 & -1 \end{bmatrix}$

 $\begin{bmatrix} 1 & -2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$

i) Find det(A)

ii) Find $det(2B^{-1}C)$

iii) Find $det(D^9 + 4D^{-1} - 3I_3)$

iv) Find an invertible matrix M such that MD = B

v) Find the solution set for the system $AX = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

QUESTION 10. Consider the system of L.E. $\begin{bmatrix} 1 & -1 & 3 \\ -1 & a & b \\ -2 & 2 & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$

i) (**4 points**) For what values of a, b will the system have a unique solution?

ii)(4 points) For what values of a, b will the system have infinitely many solutions?

iii) (**3 points**) For what values of a, b will the system be inconsistent?

Faculty information