MTH 221, Linear Algebra, Exam I, 2013

Ayman Badawi

QUESTION 1. Find the solution-set to the following system

$$
\begin{gathered}
x_{2}+x_{3}-x_{4}=-2 \\
x_{1}-x_{2}-x_{3}+x_{4}=7 \\
2 x_{1}-2 x_{2}-2 x_{3}+2 x_{4}=14
\end{gathered}
$$

QUESTION 2. For what values of k will the following system be consistent?

$$
\begin{aligned}
x_{1}+2 x_{2}-8 x_{3} & =10 \\
-x_{1}-2 x_{2}+k x_{3} & =-9 \\
2 x_{1}+4 x_{2}+k x_{3} & =16
\end{aligned}
$$

QUESTION 3. Let $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ -1 & 4 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 2 \\ -3 & 2 \\ 2 & -1\end{array}\right]$. Let $D=A B$ and $C=B A$
a) Find D_{2}
b) Find C_{3}
c) Find c_{21}

QUESTION 4. Let $C=\left[\begin{array}{lll}a & b & a \\ c & d & c \\ e & f & e\end{array}\right]$ and $K=\left[\begin{array}{c}2 a \\ 2 c \\ 2 e\end{array}\right]$, where $a, b, c, d, e, f \in R$. Consider the system of linear equations $C X=K$
a) Give me two particular solutions to the system
b) Convince me that the system has infinitely many solutions.

QUESTION 5. For what values of a, b will the following system be inconsistent?

$$
\begin{gathered}
x_{1}+4 x_{2}+4 x_{3}=a \\
-2 x_{1}-8 x_{2}+b x_{3}=6
\end{gathered}
$$

QUESTION 6. a) Let $W=\left[\begin{array}{ccc}1 & 2 & -3 \\ -1 & -1 & 3 \\ 4 & 8 & -11\end{array}\right]$. If possible find W^{-1}.
b) Let W as in (a) and find the solution-set for the system $W X=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]$

QUESTION 7. USE ROW-OPERATIONS ONLY to find $\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 1 \\ -4 & 3 & 0\end{array}\right]$

QUESTION 8. Let A be a 3×3 matrix such $A \overrightarrow{2 R_{1}+R_{3} \rightarrow R_{3}} \quad B \overrightarrow{2 R_{1}} C$
a) Find two elementary matrices E, F such that $E F C=A$
b)Find a 3×3 matrix D such that $D A=C$
c) Find a 3×3 matrix L such that $L B=C$
d) EXTRA CREDIT 3 points: Name the Arab Idol for the year 2013:

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 221, Linear Algebra, Exam II, 2013

Ayman Badawi

QUESTION 1. Given A is a 4×4 matrix such that

$$
A \overrightarrow{3 R_{1}+2 R_{2} \rightarrow R_{2}} \quad B \overrightarrow{-R_{2}+R_{4} \rightarrow R_{4}} C \xrightarrow[4 R_{3}]{\vec{~}}\left[\begin{array}{cccc}
4 & 5 & 9 & 2 \\
-4 & -4 & 6 & 2 \\
0 & 0 & 0 & 4 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

a) Find $\operatorname{det}(A)$.
b) Find the (3, 4)-entry of C^{-1}
c) Find the solution-set for the system of L.E $\quad A X=\left[\begin{array}{c}1 \\ -2 \\ 2 \\ 4\end{array}\right]$

QUESTION 2. Given A is a 4×4 matrix such that $\operatorname{det}(A)=2013$. Let K be the first row of A. Find the solution-set for the system $A^{T} X=K^{T}$. Explain briefly your solution.

QUESTION 3. a) Let $A=\left[\begin{array}{ccc}4 & 7 & a \\ -4 & b & c \\ -8 & -14 & 6\end{array}\right]$ and K be the first column of A. For what values of a, b, c will the system $A X=K$ have unique solution? Find the solution-set.
b)Let A as in (a). For what values of a, b, c will the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ have infinitely many solutions?

QUESTION 4. a) Find a 3×2 matrix A such that

$$
A\left[\begin{array}{cc}
4 & -2 \\
-2 & 0
\end{array}\right]+A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
-4 & 1
\end{array}\right]
$$

b) Given A, B are 3×3 matrices such that $\operatorname{det}(A)=-3, \operatorname{det}(B)=2$. Then
i) $\operatorname{det}\left(A^{2} B^{-1}\right)=$
ii) $\operatorname{det}\left(2 A^{T} B\right)=$

QUESTION 5. Given $A=\left[\begin{array}{ccc}6 & 8 & 2 \\ -6 & -7 & -1 \\ -6 & -8 & -4\end{array}\right]$. Use CRAMER rule to find the value of x_{3} when solving the system
$A X=\left[\begin{array}{c}10 \\ -5 \\ -20\end{array}\right]$

QUESTION 6. Let $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 4 & a & b \\ c & 7 & 10\end{array}\right]$ such that $\operatorname{det}(A)=70$. Given $B=\left[\begin{array}{ccc}1 & 2 & 4 \\ -3 & a & b \\ c & 7 & 10\end{array}\right]$. Find $\operatorname{det}(B)$.

QUESTION 7. Let $A=\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & 1\end{array}\right]$
Find all eigenvalues of A, then for each eigenvalue γ of A, find E_{γ}.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 221, Linear Algebra, Final Exam, 2013

Ayman Badawi

QUESTION 1. i) Find a matrix $A, 3 \times 3$, with eigenvalues: 2,3 , and a for some number a such that $(0,2,3) \in E_{2}(A)$ and $(0,-2,-2) \in E_{3}(A)$. [You do not need to calculate the eigenvalue a
ii) Let A as in (i) above. Find a nonzero matrix $Q, 3 \times 4$ such that $A Q=2 Q$

QUESTION 2. For what values of a, b, c, d, e, f will the matrix $A=\left[\begin{array}{cccc}2 & a & b & c \\ 0 & 2 & e & d \\ 0 & 0 & 3 & f \\ 0 & 0 & 0 & 6\end{array}\right]$ be diagnolizable?

QUESTION 3. ii) If A is diagnolizable, then find an invertible matrix Q and a diagonal matrix D such that $Q D Q^{-1}=$ A.
iii)Find a nonzero matrix $F, 4 \times 2$ such that $A F=3 F$

QUESTION 4. i) Give me an example of two matrices, 2×2, say A and B such that A is row-equivalent to B but A and B have different eigenvalues.
ii) Given $A=\left[\begin{array}{cc}0 & -4 \\ 1 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -3 \\ 1 & 4\end{array}\right]$. Is there an invertible matrix $L, 2 \times 2$, such that $L A L^{-1}=B$? If YES, then find L. If NO, then briefly explain.
iii) Given $A=\left[\begin{array}{ll}4 & 0 \\ 0 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right]$. Find an invertible matrix Q such that $Q A Q^{-1}=B$.
iv) Given A is a 3×3 matrix and $B=A-2 I_{3}$ where $0,1,2$ are the eigenvalues of B. Find the eigenvalues of A and calculate $\operatorname{det}(A)$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 221, Linear Algebra, Final Exam, 2013

Ayman Badawi

QUESTION 1. (5 points) i) Find a matrix $A, 3 \times 3$, with eigenvalues: 2, 3, -9 such that $(0,2,3) \in E_{2}(A)$ and $(0,-2,-2) \in E_{3}(A)$. [There are infinitely many possibilities for the matrix A , I only ask you to give me one possibility]. For the matrix A you found, what is $E_{-9}(A)$.
ii) (3 points) Let A as in (i) above. Find a nonzero matrix $Q, 3 \times 4$, such that $A Q=2 Q$

QUESTION 2. (5 points) For what values of a, b, c, d, e, f will the matrix $A=\left[\begin{array}{llll}2 & a & b & c \\ 0 & 2 & e & d \\ 0 & 0 & 3 & f \\ 0 & 0 & 0 & 6\end{array}\right]$ be diagnolizable?

QUESTION 3. (Each 3 points) The following are not subspaces. Use examples to show that one of the two conditions for a set to be a subspace is failed.
i) $M=\left\{A \in R^{4 \times 4} \mid \operatorname{Rank}(A) 44\right\}$
ii) $L=\left\{f(x) \in P_{4} \mid f(0)\right.$ is an integer (whole number) $\}$
iii) $F=\left\{A \in R^{3 \times 3} \mid A\right.$ is non-invertible $\}$
iv) $D=\left\{f(x) \in P_{4} \mid f(0)=0\right.$ or $\left.f(1)=0\right\}$
v) $H=\{a, 2 a+c-3, c) \mid a, c \in R\}$

QUESTION 4. (Each 3 points) The following are subspaces. Find the dimension and find a basis for each one of them.
i) $F=\left\{f(x) \in P_{6} \mid f(1)=f(0)=f(2)=0\right\}$
ii) $K=\left\{f(x) \in P_{3} \mid \int_{-1}^{1} f(x) d x=0\right\}$
iii) $L=\{(a-b, 3 a-3 b, c, d) \mid a, b, c, d \in R\}$
iv) $F=\operatorname{span}\left\{x^{3}+x-3,-6 x, 2 x^{3}-10 x-6\right\}$
(Question 4 continues):
v) $N=\operatorname{row}(A)$ where $A=\left[\begin{array}{cccc}1 & -1 & -2 & 3 \\ -1 & 1 & 2 & 1 \\ 2 & -2 & -4 & 6\end{array}\right]$
vi) $G=\operatorname{Col}(A)$ where A as in v above.

QUESTION 5. (6 points) Let $M=\operatorname{span}\{(1,0,0,1),(0,1,0,1),(0,0,1,-1),(2,2,2,2)\}$. Find an orthogonal basis for M.

QUESTION 6. (8 points) Find a matrix $A, 4 \times 3$, such that $A\left[\begin{array}{ccc}-1 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & -1 & 0\end{array}\right]+2 A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.

QUESTION 7. (4 points) Given $\left\{(2,0,4,-1),(-4,0,-8,3), Q_{1}, Q_{2}\right\}$ is a basis for R^{4}. Find the points Q_{1}, Q_{2}.

QUESTION 8. (10 points) Let $T: R^{4} \rightarrow R^{5}$ be a linear transformation such that $T(2,0,0,0)=T(0,0,0,4)=$ $(4,8,0,4,0)$ and $T(2,0,1,4)=T(0,1,0,0)=(-2,-6,2,0,-2)$.
i) Find the standard matrix representation of T.
ii) Find a basis for the range of T
iii) Find a basis for the $\operatorname{Ker}(T)$

QUESTION 9. (each 3 points points) Let A be a 3×3 matrix such that $A \overrightarrow{3 R_{2}} B \overrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}} C \overrightarrow{-4 R_{3}} D=$ $\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$
i) Find $\operatorname{det}(A)$
ii) Find $\operatorname{det}\left(2 B^{-1} C\right)$
iii) Find $\operatorname{det}\left(D^{9}+4 D^{-1}-3 I_{3}\right)$
iv) Find an invertible matrix M such that $M D=B$
v) Find the solution set for the system $A X=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$

QUESTION 10. Consider the system of L.E. $\left[\begin{array}{ccc}1 & -1 & 3 \\ -1 & a & b \\ -2 & 2 & b\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}2 \\ -3 \\ 2\end{array}\right]$
i) (4 points) For what values of a, b will the system have a unique solution?
ii)(4 points) For what values of a, b will the system have infinitely many solutions?
iii) ($\mathbf{3}$ points) For what values of a, b will the system be inconsistent?

